Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Analysis of cellulose synthase genes from domesticated apple identifies collinear genes WDR53 and CesA8A: partial co-expression, bicistronic mRNA, and alternative splicing of CESA8A.

Identifieur interne : 002C05 ( Main/Exploration ); précédent : 002C04; suivant : 002C06

Analysis of cellulose synthase genes from domesticated apple identifies collinear genes WDR53 and CesA8A: partial co-expression, bicistronic mRNA, and alternative splicing of CESA8A.

Auteurs : Gea Guerriero [Italie] ; Oliver Spadiut ; Christine Kerschbamer ; Filomena Giorno ; Sanja Baric ; Inés Ezcurra

Source :

RBID : pubmed:23048131

Descripteurs français

English descriptors

Abstract

Cellulose synthase (CesA) genes constitute a complex multigene family with six major phylogenetic clades in angiosperms. The recently sequenced genome of domestic apple, Malus×domestica, was mined for CesA genes, by blasting full-length cellulose synthase protein (CESA) sequences annotated in the apple genome against protein databases from the plant models Arabidopsis thaliana and Populus trichocarpa. Thirteen genes belonging to the six angiosperm CesA clades and coding for proteins with conserved residues typical of processive glycosyltransferases from family 2 were detected. Based on their phylogenetic relationship to Arabidopsis CESAs, as well as expression patterns, a nomenclature is proposed to facilitate further studies. Examination of their genomic organization revealed that MdCesA8-A is closely linked and co-oriented with WDR53, a gene coding for a WD40 repeat protein. The WDR53 and CesA8 genes display conserved collinearity in dicots and are partially co-expressed in the apple xylem. Interestingly, the presence of a bicistronic WDR53-CesA8A transcript was detected in phytoplasma-infected phloem tissues of apple. The bicistronic transcript contains a spliced intergenic sequence that is predicted to fold into hairpin structures typical of internal ribosome entry sites, suggesting its potential cap-independent translation. Surprisingly, the CesA8A cistron is alternatively spliced and lacks the zinc-binding domain. The possible roles of WDR53 and the alternatively spliced CESA8 variant during cellulose biosynthesis in M.×domestica are discussed.

DOI: 10.1093/jxb/ers255
PubMed: 23048131
PubMed Central: PMC4944836


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Analysis of cellulose synthase genes from domesticated apple identifies collinear genes WDR53 and CesA8A: partial co-expression, bicistronic mRNA, and alternative splicing of CESA8A.</title>
<author>
<name sortKey="Guerriero, Gea" sort="Guerriero, Gea" uniqKey="Guerriero G" first="Gea" last="Guerriero">Gea Guerriero</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laimburg Research Centre for Agriculture and Forestry, Laimburg 6, I-39040 Auer, Italy. gea.guerriero@boku.ac.at</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Laimburg Research Centre for Agriculture and Forestry, Laimburg 6, I-39040 Auer</wicri:regionArea>
<wicri:noRegion>I-39040 Auer</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Spadiut, Oliver" sort="Spadiut, Oliver" uniqKey="Spadiut O" first="Oliver" last="Spadiut">Oliver Spadiut</name>
</author>
<author>
<name sortKey="Kerschbamer, Christine" sort="Kerschbamer, Christine" uniqKey="Kerschbamer C" first="Christine" last="Kerschbamer">Christine Kerschbamer</name>
</author>
<author>
<name sortKey="Giorno, Filomena" sort="Giorno, Filomena" uniqKey="Giorno F" first="Filomena" last="Giorno">Filomena Giorno</name>
</author>
<author>
<name sortKey="Baric, Sanja" sort="Baric, Sanja" uniqKey="Baric S" first="Sanja" last="Baric">Sanja Baric</name>
</author>
<author>
<name sortKey="Ezcurra, Ines" sort="Ezcurra, Ines" uniqKey="Ezcurra I" first="Inés" last="Ezcurra">Inés Ezcurra</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:23048131</idno>
<idno type="pmid">23048131</idno>
<idno type="doi">10.1093/jxb/ers255</idno>
<idno type="pmc">PMC4944836</idno>
<idno type="wicri:Area/Main/Corpus">002859</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002859</idno>
<idno type="wicri:Area/Main/Curation">002859</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002859</idno>
<idno type="wicri:Area/Main/Exploration">002859</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Analysis of cellulose synthase genes from domesticated apple identifies collinear genes WDR53 and CesA8A: partial co-expression, bicistronic mRNA, and alternative splicing of CESA8A.</title>
<author>
<name sortKey="Guerriero, Gea" sort="Guerriero, Gea" uniqKey="Guerriero G" first="Gea" last="Guerriero">Gea Guerriero</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laimburg Research Centre for Agriculture and Forestry, Laimburg 6, I-39040 Auer, Italy. gea.guerriero@boku.ac.at</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Laimburg Research Centre for Agriculture and Forestry, Laimburg 6, I-39040 Auer</wicri:regionArea>
<wicri:noRegion>I-39040 Auer</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Spadiut, Oliver" sort="Spadiut, Oliver" uniqKey="Spadiut O" first="Oliver" last="Spadiut">Oliver Spadiut</name>
</author>
<author>
<name sortKey="Kerschbamer, Christine" sort="Kerschbamer, Christine" uniqKey="Kerschbamer C" first="Christine" last="Kerschbamer">Christine Kerschbamer</name>
</author>
<author>
<name sortKey="Giorno, Filomena" sort="Giorno, Filomena" uniqKey="Giorno F" first="Filomena" last="Giorno">Filomena Giorno</name>
</author>
<author>
<name sortKey="Baric, Sanja" sort="Baric, Sanja" uniqKey="Baric S" first="Sanja" last="Baric">Sanja Baric</name>
</author>
<author>
<name sortKey="Ezcurra, Ines" sort="Ezcurra, Ines" uniqKey="Ezcurra I" first="Inés" last="Ezcurra">Inés Ezcurra</name>
</author>
</analytic>
<series>
<title level="j">Journal of experimental botany</title>
<idno type="eISSN">1460-2431</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alternative Splicing (MeSH)</term>
<term>Arabidopsis (classification)</term>
<term>Arabidopsis (enzymology)</term>
<term>Arabidopsis (genetics)</term>
<term>Base Sequence (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Glucosyltransferases (genetics)</term>
<term>Glucosyltransferases (metabolism)</term>
<term>Malus (classification)</term>
<term>Malus (enzymology)</term>
<term>Malus (genetics)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Populus (classification)</term>
<term>Populus (enzymology)</term>
<term>Populus (genetics)</term>
<term>RNA, Messenger (genetics)</term>
<term>RNA, Messenger (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (génétique)</term>
<term>ARN messager (métabolisme)</term>
<term>Arabidopsis (classification)</term>
<term>Arabidopsis (enzymologie)</term>
<term>Arabidopsis (génétique)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Glucosyltransferases (génétique)</term>
<term>Glucosyltransferases (métabolisme)</term>
<term>Malus (classification)</term>
<term>Malus (enzymologie)</term>
<term>Malus (génétique)</term>
<term>Phylogenèse (MeSH)</term>
<term>Populus (classification)</term>
<term>Populus (enzymologie)</term>
<term>Populus (génétique)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Épissage alternatif (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glucosyltransferases</term>
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Arabidopsis</term>
<term>Malus</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Arabidopsis</term>
<term>Malus</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Arabidopsis</term>
<term>Malus</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Malus</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN messager</term>
<term>Arabidopsis</term>
<term>Glucosyltransferases</term>
<term>Malus</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glucosyltransferases</term>
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN messager</term>
<term>Glucosyltransferases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Alternative Splicing</term>
<term>Base Sequence</term>
<term>Gene Expression Regulation, Plant</term>
<term>Molecular Sequence Data</term>
<term>Phylogeny</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Données de séquences moléculaires</term>
<term>Phylogenèse</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Séquence nucléotidique</term>
<term>Épissage alternatif</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cellulose synthase (CesA) genes constitute a complex multigene family with six major phylogenetic clades in angiosperms. The recently sequenced genome of domestic apple, Malus×domestica, was mined for CesA genes, by blasting full-length cellulose synthase protein (CESA) sequences annotated in the apple genome against protein databases from the plant models Arabidopsis thaliana and Populus trichocarpa. Thirteen genes belonging to the six angiosperm CesA clades and coding for proteins with conserved residues typical of processive glycosyltransferases from family 2 were detected. Based on their phylogenetic relationship to Arabidopsis CESAs, as well as expression patterns, a nomenclature is proposed to facilitate further studies. Examination of their genomic organization revealed that MdCesA8-A is closely linked and co-oriented with WDR53, a gene coding for a WD40 repeat protein. The WDR53 and CesA8 genes display conserved collinearity in dicots and are partially co-expressed in the apple xylem. Interestingly, the presence of a bicistronic WDR53-CesA8A transcript was detected in phytoplasma-infected phloem tissues of apple. The bicistronic transcript contains a spliced intergenic sequence that is predicted to fold into hairpin structures typical of internal ribosome entry sites, suggesting its potential cap-independent translation. Surprisingly, the CesA8A cistron is alternatively spliced and lacks the zinc-binding domain. The possible roles of WDR53 and the alternatively spliced CESA8 variant during cellulose biosynthesis in M.×domestica are discussed.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23048131</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>03</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1460-2431</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>63</Volume>
<Issue>16</Issue>
<PubDate>
<Year>2012</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Journal of experimental botany</Title>
<ISOAbbreviation>J Exp Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>Analysis of cellulose synthase genes from domesticated apple identifies collinear genes WDR53 and CesA8A: partial co-expression, bicistronic mRNA, and alternative splicing of CESA8A.</ArticleTitle>
<Pagination>
<MedlinePgn>6045-56</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/jxb/ers255</ELocationID>
<Abstract>
<AbstractText>Cellulose synthase (CesA) genes constitute a complex multigene family with six major phylogenetic clades in angiosperms. The recently sequenced genome of domestic apple, Malus×domestica, was mined for CesA genes, by blasting full-length cellulose synthase protein (CESA) sequences annotated in the apple genome against protein databases from the plant models Arabidopsis thaliana and Populus trichocarpa. Thirteen genes belonging to the six angiosperm CesA clades and coding for proteins with conserved residues typical of processive glycosyltransferases from family 2 were detected. Based on their phylogenetic relationship to Arabidopsis CESAs, as well as expression patterns, a nomenclature is proposed to facilitate further studies. Examination of their genomic organization revealed that MdCesA8-A is closely linked and co-oriented with WDR53, a gene coding for a WD40 repeat protein. The WDR53 and CesA8 genes display conserved collinearity in dicots and are partially co-expressed in the apple xylem. Interestingly, the presence of a bicistronic WDR53-CesA8A transcript was detected in phytoplasma-infected phloem tissues of apple. The bicistronic transcript contains a spliced intergenic sequence that is predicted to fold into hairpin structures typical of internal ribosome entry sites, suggesting its potential cap-independent translation. Surprisingly, the CesA8A cistron is alternatively spliced and lacks the zinc-binding domain. The possible roles of WDR53 and the alternatively spliced CESA8 variant during cellulose biosynthesis in M.×domestica are discussed.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Guerriero</LastName>
<ForeName>Gea</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Laimburg Research Centre for Agriculture and Forestry, Laimburg 6, I-39040 Auer, Italy. gea.guerriero@boku.ac.at</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Spadiut</LastName>
<ForeName>Oliver</ForeName>
<Initials>O</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kerschbamer</LastName>
<ForeName>Christine</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Giorno</LastName>
<ForeName>Filomena</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Baric</LastName>
<ForeName>Sanja</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ezcurra</LastName>
<ForeName>Inés</ForeName>
<Initials>I</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>JQ272846</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>M 1315</GrantID>
<Agency>Austrian Science Fund FWF</Agency>
<Country>Austria</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Exp Bot</MedlineTA>
<NlmUniqueID>9882906</NlmUniqueID>
<ISSNLinking>0022-0957</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.1.-</RegistryNumber>
<NameOfSubstance UI="D005964">Glucosyltransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.1.-</RegistryNumber>
<NameOfSubstance UI="C478648">cellulose synthase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017398" MajorTopicYN="Y">Alternative Splicing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005964" MajorTopicYN="N">Glucosyltransferases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027845" MajorTopicYN="N">Malus</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">EMS50177</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>10</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>10</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>3</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23048131</ArticleId>
<ArticleId IdType="pii">ers255</ArticleId>
<ArticleId IdType="doi">10.1093/jxb/ers255</ArticleId>
<ArticleId IdType="pmc">PMC4944836</ArticleId>
<ArticleId IdType="mid">EMS50177</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):1450-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12538856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 May;12(5):721-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10810146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):16899-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12477932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2009;4(3):363-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19247286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2006 Oct 10;7:439</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17032440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Mar;20(3):720-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18349153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2005 Feb;11(2):128-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15659355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Aug;153(4):1445-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20508141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Sep 25;104(39):15566-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17878302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2009 Jan 15;417(2):547-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18823281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Nov;139(3):1323-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16244158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Jul;14(7):1557-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12119374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Sep 25;104(39):15572-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17878303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2005 Jun;69(2):262-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15944456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Genes Evol. 2004 Feb;214(2):81-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14740209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Aug 20;99(17):11109-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12154226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2011 Mar 30;2:5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22629257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jun;132(2):786-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2010 Oct;35(10):565-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20451393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2009 Sep-Oct;1789(9-10):518-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19631772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Jan 30;279(5351):717-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9445479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomacromolecules. 2007 Aug;8(8):2556-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17655354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 May;34(3):351-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12713541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Oct;124(2):495-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11027699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Aug;156(4):2155-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21697508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Jun 22;474(7352):S12-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21697834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 8;103(32):12191-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16873546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Jul 9;142(1):123-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20579721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):16116-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21876149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Jan 24;112(2):243-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12553912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Aug;123(4):1313-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10938350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Nov;60(4):649-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19674407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Mar 19;32(5):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2010 Feb;52(2):161-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20377678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Jul;153(3):906-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20488898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Mar;19(3):890-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17351116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jul;156(3):1364-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21546454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2009 Oct;46(10):759-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19589393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2003 Dec 12;4(1):50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14672542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4098-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22375033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2011 Jan 15;10(2):229-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21220943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2003 Oct;52(5):696-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14530136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010 Mar 16;11:178</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20233415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2011 Mar;4(2):199-211</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21307367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jun;166(3):907-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15869651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2004 Apr;61(7-8):930-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15095013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2011 Nov;6(11):1706-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22067998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2009 Aug;12(4):406-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19616468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2003 Dec;8(12):563-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14659702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1994 Sep;176(18):5735-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8083166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Cell. 2008 Jan;100(1):27-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18072942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Sep 5;278(36):34373-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12807914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 2002 Jun;32(6):1372-4, 1376, 1378-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12074169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1997 Apr 15;16(8):2023-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9155028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2004 Jun;14(6):1060-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15173112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2009 May 27;10:160</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19473520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:245-276</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jul;35(Web Server issue):W585-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17517783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Jul;221(5):739-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15940463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2010 Oct;42(10):833-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20802477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jan 27;101(4):986-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14722352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2009 Mar 18;583(6):978-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19258017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2008 Oct;17(10):1771-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18715992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Mar;62(6):2053-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21209026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jul 1;31(13):3406-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12824337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Jun;153(2):479-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20410434</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Italie</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Baric, Sanja" sort="Baric, Sanja" uniqKey="Baric S" first="Sanja" last="Baric">Sanja Baric</name>
<name sortKey="Ezcurra, Ines" sort="Ezcurra, Ines" uniqKey="Ezcurra I" first="Inés" last="Ezcurra">Inés Ezcurra</name>
<name sortKey="Giorno, Filomena" sort="Giorno, Filomena" uniqKey="Giorno F" first="Filomena" last="Giorno">Filomena Giorno</name>
<name sortKey="Kerschbamer, Christine" sort="Kerschbamer, Christine" uniqKey="Kerschbamer C" first="Christine" last="Kerschbamer">Christine Kerschbamer</name>
<name sortKey="Spadiut, Oliver" sort="Spadiut, Oliver" uniqKey="Spadiut O" first="Oliver" last="Spadiut">Oliver Spadiut</name>
</noCountry>
<country name="Italie">
<noRegion>
<name sortKey="Guerriero, Gea" sort="Guerriero, Gea" uniqKey="Guerriero G" first="Gea" last="Guerriero">Gea Guerriero</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002C05 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002C05 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23048131
   |texte=   Analysis of cellulose synthase genes from domesticated apple identifies collinear genes WDR53 and CesA8A: partial co-expression, bicistronic mRNA, and alternative splicing of CESA8A.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23048131" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020